What Do We Know About the LongTerm Impacts of Teacher Value-Added?

Stephen W. Raudenbush
University of Chicago | Apr 2014

CARNGEGIE KNOWLEDGE NETWORK
What We Know Series:
Value -Added Methods and Applications

Should We Use VA?

- Social Welfare
- Instructional Sensitivity
- Fairness

From MET

- Value Added
- Classroom Observations
- Student Perceptions

But

Does VA last ?

Does high VA predict things that matter?

Highlights

- Two recent studies provide evidence that attending a high value-added classroom predicts college attendance and earnings.
- In one study, part of the impact of attending an effective classroom may have been attributable to small class size; in the other, part of the effect may be attributable to the effectiveness of the school.
- Teacher value-added scores "fade out" over time.

How Big is "Initial" VA

Teacher 1
Teacher 2

Teacher 1's kids Teacher 2's kids
$70^{\text {th }}$ percentile $30^{\text {th }}$ percentile
$53^{\text {rd }}$ percentile $47^{\text {th }}$ percentile

Long Term Impact

Chetty et al. 2011 Tennessee STAR

- Random Assignment k Teachers
- Random Assignment of teachers to small class size

Chetty et al. 2013

- 2.5 million kids in NY
- Grade 3-8

Table 1: Impacts of Value-Added on Adult Outcomes

	Impact of classroom quality overall (Chetty et al. 2011)	Impact of classroom value added (Chetty et al., 2011)	Impact of teacher value added (Chetty et al., 2013)
Initial test scores	8.8 percentiles $(.32 \mathrm{sd)}$		
College Attendance		0.28% above mean of 45.5%	0.82% above mean of 37.22%
College Quality index	0.06 sd	0.02 sd	
Earnings	$\$ 1520=8.8 \%$ above mean	$\$ 1619=11.1 \%$ above mean	$\$ 350=1.65 \%$ above mean
Teen parenthood		0.61% below mean of 14.3%	
Other outcomes			Increases in neighborhood quality, saving with 401K

Table 1: Impacts of Value-Added on Adult Outcomes

	Impact of classroom quality overall (Chetty et al. 2011)	Impact of classroom value added (Chetty et al., 2011)	Impact of teacher value added (Chetty et al., 2013)
Initial test scores	8.8 percentiles (.32 sd)		
College Attendance		0.28 percent above mean of 45.5\%	0.82% above mean of 37.22%
College Quality index	$\$ 1520=8.8 \%$ above mean	$\$ 1619=11.1 \%$ above mean)	$\$ 350=1.65 \%$ above mean)
Earnings			0.61% sd 14.3%
Teen parenthood		Increases in mean of neighborhood quality, saving with 401K	
Other outcomes			

Table 1: Impacts of Value-Added on Adult Outcomes

	Impact of classroom quality overall (Chetty et al. 2011)	Impact of classroom value added (Chetty et al., 2011)	Impact of teacher value added (Chetty et al., 2013)
Initial test scores	8.8 percentiles (.32 sd)		
College Attendance		0.28 percent above mean of 45.5\%	0.82% above mean of 37.22%
College Quality index	0.06 sd above mean	$\$ 1619$ (11.1\% above mean)	$\$ 350=1.65 \%$ above mean
Earnings			0.61% below mean of 14.3\%
Teen parenthood		Increases in neighborhood quality, saving with 401 K	
Other outcomes			0.02 sd

Table 2: Persistence of Value-Added After Initial Year as Fraction of Value-Added During Initial Year

Study	Sample	Year 1	Year 2	Year 3	$\begin{gathered} \hline \text { Year > } \\ 3 \end{gathered}$
Kinsler (2012)	$\mathrm{N}=689,641$ students, grades 3-5, 19982005, in North Carolina	$\begin{array}{\|l\|} \hline .24 \text { (math) } \\ .14 \text { (reading) } \\ \hline \end{array}$			
Master, Loeb, and Wycoff, 2014	$\mathrm{N}=700,000$ students, grades 3-8, 20052226 in New York City	.19 (math) . 21 (language arts)			
McCaffrey et al (2004)	$\mathrm{N}=678$, grades 3 -5, large suburban district	. 25	. 15	--	--
Lockwood et al	$\mathrm{N}=10,000$, Grades 1-5, large urban district	. 18	. 15	. 14	. 12
Kane and Staiger (2008)	97 pairs of teachers, grades 2-5, randomization to students to teachers within pairs	. 50			
Jacob, Lefgren, and Sims (2010)	$\mathrm{n}=18,240$, grades 4-15, mid-size Western District	. 20			
Rothstein (2010)	$\mathrm{n}=99,071$, grades 3-5, North Carolina statewide	.27 (math) .33 (reading)			
Measurement of Effective Teaching (2012)	1811 teachers randomized within schools to student rosters, grades 4-8 in 6 school districts	. 45			
Chetty et al. (2012)	10,992 students randomized to classes within 79 schools in Tennessee				0
Chetty et al. (2013)	2.5 million children grades 3-8 in NY	. 50	. 40	. 20	. 20

Table 2: Persistence of Value-Added After Initial Year as Fraction of Value-Added During Initial Year

Study	Sample	Year 1	Year 2	Year 3	$\begin{array}{\|c} \hline \text { Year > } \\ 3 \end{array}$
Kinsler (2012)	$\mathrm{N}=689,641$ students, grades 3-5, 19982005, in North Carolina	. 24 (math) .14 (reading)			
Master, Loeb, and Wycoff, 2014	$\mathrm{N}=700,000$ students, grades 3-8, 20052226 in New York City	.19 (math) .21 (language arts)			
McCaffrey et al (2004)	$\mathrm{N}=678$, grades 3-5, large suburban district	. 25	. 15	--	--
Lockwood et al	$\mathrm{N}=10,000$, Grades 1-5, large urban district	. 18	. 15	. 14	. 12
Kane and Staiger (2008)	97 pairs of teachers, grades 2-5, randomization to students to teachers within pairs	. 50			
Jacob, Lefgren, and Sims (2010)	$\mathrm{n}=18,240$, grades 4-15, mid-size Western District	. 20			
Rothstein (2010)	$\mathrm{n}=99,071$, grades 3-5, North Carolina statewide	$\begin{array}{\|l\|} \hline .27 \text { (math) } \\ .33 \text { (reading) } \end{array}$			
Measurement of Effective Teaching (2012)	1811 teachers randomized within schools to student rosters, grades 4-8 in 6 school districts	. 45			
Chetty et al. (2012)	10,992 students randomized to classes within 79 schools in Tennessee				0
Chetty et al. (2013)	2.5 million children grades 3-8 in NY	. 50	. 40	. 20	. 20

Table 2: Persistence of Value-Added After Initial Year as Fraction of Value-Added During Initial Year

Study	Sample	Year 1	Year 2	Year 3	$\begin{gathered} \text { Year > } \\ 3 \end{gathered}$
Kinsler (2012)	$\mathrm{N}=689,641$ students, grades 3-5, 19982005, in North Carolina	.24 (math) .14 (reading)			
Master, Loeb, and Wycoff, 2014	N=700,000 students, grades 3-8, 20052226 in New York City	.19 (math) . 21 (language arts)			
McCaffrey et al (2004)	$\mathrm{N}=678$, grades 3-5, large suburban district	. 25	. 15	--	--
Lockwood et al	$\mathrm{N}=10,000$, Grades 1-5, large urban district	. 18	. 15	. 14	. 12
Kane and Staiger (2008)	97 pairs of teachers, grades 2-5, randomization to students to teachers within pairs	. 50			
Jacob, Lefgren, and Sims (2010)	$\mathrm{n}=18,240$, grades 4-15, mid-size Western District	. 20			
Rothstein (2010)	$\mathrm{n}=99,071$, grades 3-5, North Carolina statewide	$\begin{array}{\|l\|} \hline .27 \text { (math) } \\ .33 \text { (reading) } \end{array}$			
Measurement of Effective Teaching (2012)	1811 teachers randomized within schools to student rosters, grades 4-8 in 6 school districts	. 45			
Chetty et al. (2012)	10,992 students randomized to classes within 79 schools in Tennessee				0
Chetty et al. (2013)	2.5 million children grades 3-8 in NY	. 50	. 40	. 20	. 20

Table 2: Persistence of Value-Added After Initial Year as Fraction of Value-Added During Initial Year

Study	Sample	Year 1	Year 2	Year 3	$\begin{array}{\|c} \hline \text { Year > } \\ 3 \end{array}$
Kinsler (2012)	$\mathrm{N}=689,641$ students, grades 3-5, 19982005, in North Carolina	$\begin{array}{\|l} \hline .24 \text { (math) } \\ .14 \text { (reading) } \\ \hline \end{array}$			
Master, Loeb, and Wycoff, 2014	$\mathrm{N}=700,000$ students, grades 3-8, 20052226 in New York City	.19 (math) .21 (language arts)			
McCaffrey et al (2004)	$\mathrm{N}=678$, grades 3-5, large suburban district	. 25	. 15	--	--
Lockwood et al	$\mathrm{N}=10,000$, Grades 1-5, large urban district	. 18	. 15	. 14	. 12
Kane and Staiger (2008)	97 pairs of teachers, grades 2-5, randomization to students to teachers within pairs	. 50			
Jacob, Lefgren, and Sims (2010)	$\mathrm{n}=18,240$, grades 4-15, mid-size Western District	. 20			
Rothstein (2010)	$\mathrm{n}=99,071$, grades 3-5, North Carolina statewide	.27 (math) . 33 (reading)			
Measurement of Effective Teaching (2012)	1811 teachers randomized within schools to student rosters, grades 4-8 in 6 school districts	. 45			
Chetty et al. (2012)	10,992 students randomized to classes within 79 schools in Tennessee				0
Chetty et al. (2013)	2.5 million children grades 3-8 in New York	. 50	. 40	. 20	. 20

Table 2: Persistence of Value-Added After Initial Year as Fraction of Value-Added During Initial Year

Study	Sample	Year 1	Year 2	Year 3	$\begin{gathered} \text { Year }> \\ 3 \\ \hline \end{gathered}$
Kinsler (2012)	$\mathrm{N}=689,641$ students, grades 3-5, 19982005, in North Carolina	.24 (math) . 14 (reading)			
Master, Loeb, and Wycoff, 2014	$\mathrm{N}=700,000$ students, grades 3-8, 20052226 in New York City	. 19 (math) . 21 (language arts)			
McCaffrey et al (2004)	$\mathrm{N}=678$, grades $3-5$, large suburban district	. 25	. 15	--	--
Lockwood et al	$\mathrm{N}=10,000$, Grades 1-5, large urban district	. 18	. 15	. 14	. 12
Kane and Staiger (2008)	97 pairs of teachers, grades 2-5, randomization to students to teachers within pairs	. 50			
Jacob, Lefgren, and Sims (2010)	$\mathrm{n}=18,240$, grades 4-15, mid-size Western District	. 20			
Rothstein (2010)	$\mathrm{n}=99,071$, grades 3-5, North Carolina statewide	.27 (math) .33 (reading)			
Measurement of Effective Teaching (2012)	1811 teachers randomized within schools to student rosters, grades 4-8 in 6 school districts	. 45			
Chetty et al. (2012)	10,992 students randomized to classes within 79 schools in Tennessee				0
Chetty et al. (2013)	2.5 million children grades 3-8 in NY	. 50	. 40	. 20	. 20

Questions for Future

- Why fade out?
- Skills not measured on achievement tests
- Academic
- Non-academic

Key Caveats

- Precision

- Partial coverage of "Social Welfare"
- Role of school as organization

